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The heating of 4-chloropyridine with 2-bromophenol in either neat or DME as solvent gives rise to 2-
bromophenoxy pyridines, which were treated with Pd(OAc)2 and various ligands to afford functionalized
benzo[4,5]furo[3,2-c]pyridines.

� 2009 Elsevier Ltd. All rights reserved.
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Benzo[4,5]furo[3,2-c]pyridines are a common structural motif
in medicinal chemistry and often display important biological
activity.1 These heterocycles are also used as organic electrolumi-
nescent material.2 Pd-catalyzed intramolecular Heck reaction of
suitably tethered aryl halides has been utilized in the preparation
of dibenzofurans,3,5 benzo[4,5]furo heterocycles,4 and carbazoles,5

the corresponding application with halogenated phenoxy pyri-
dines has seen scant use in the synthesis of benzo[4,5]furo[3,2-
c]pyridines. There are only two reports6,7 on the Pd-catalyzed
intramolecular Heck reaction of halogenated phenoxy pyridines.
We now report a convenient synthesis of benzo[4,5]furo[3,2-c]pyr-
idines bearing several substituents on both rings by adaptation of
the Heck reaction.
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Rapid access to 2-bromophenoxy pyridines was found in coupling
of 4-chloropyridines with 2-bromophenols neat or in DME as sol-
vent at 160 �C (sealed tube) for 24 h (Scheme 1). The reaction pro-
ceeded satisfactorily in typical yields of 40–75%, but 2f was isolated
only in 13% yield.
ll rights reserved.
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Various catalysts, ligands, and bases were screened for the Heck
cyclization (Table 1). First, we examined reaction conditions re-
ported in the two literature precedents (Eqs. 1 and 2).6,7 When 2-
bromophenoxy pyridine was treated with 10 mol % Pd(OAc)2 in
refluxing DMA in the presence of Na2CO3 (Eq. 1), benzo[4,5]-
furo[3,2-c]pyridine 3a was obtained in 59% yield (entry 1). Cycliza-
tion of 2a under Janin’s conditions [5 mol % Pd(OAc)2, K2CO3, and
tetrabutylammonium bromide as promoter in refluxing DMF un-
der air, eq. 2] afforded 3a in significantly lower yield (31%, entry
2). When the reaction was conducted in sealed tube at 130 �C,
the yield improved to 65% (entry 3). A survey of different ligands
such as dppf (entry 4), palladacyclic precatalyst (entry 5), Josiphos
type ligand (entry 6), tricyclohexylphosphine (entry 7), and an
imidazole ligand (1,3-bis-(2,6-diisopropylphenyl)imidazolium
chloride, IPr–HCl) (entry 8), suggested that IPr–HCl was most effec-
tive for this cyclization in the presence of 5 mol % Pd(OAc)2,
10 mol % IPr–HCl, and K2CO3 in DME at 130 �C (sealed tube) to pro-
vide product 3a in 95% isolated yield (entry 7).

By utilizing optimized conditions, we examined an intramolec-
ular Heck reaction of various 2-bromophenoxy pyridines as
summarized in Table 2. Under optimized conditions, both elec-
tron-deficient (entries 2, 3, and 4) and electron-donating (entry
5) substrates gave good yields of the desired products. Although
the scope is generally broad, several limitations have been noted.
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Scheme 1. Synthesis of 2-(2-bromophenoxy)pyridines.



Table 1
Optimization of cyclization conditions

N

O

N

O

Br [Pd], ligand
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a3a2

Entry Palladium/ligand Conditions Yields (%)

1a Pd(OAc)2 Na2CO3 59
DMA
Reflux

2b Pd(OAc)2 K2CO3, TBAB 31
DMF, air
Reflux

3 Pd(OAc)2 K2CO3, TBAB 65
DMF, 130 �C
Sealed tube

4 PdCl2 [dppf] Et3N 72
DMA, 130 �C
Sealed tube

5 Pd2 (P(o-Tol)3)2 (u-OAc)2 NaOAc 80
DMA,130 �C
Sealed tube

6 Pd(OAc)2/Josiphos K2CO3 82
DME,130 �C
Sealed tube

7 Pd(OAc)2/Cy3P�HBF4 K2CO3 85
DME,130 �C
Sealed tube

8 Pd(OAc)2/IPr–HCl K2CO3 95
DME,130 �C
Sealed tube

a Following the condition described by Ames.
b Following the condition described by Janin.

Table 2
Preparation of Benzo[4,5]furo[3,2-c]pyridines
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Table 2 (continued)

Entry 3 Yielda (%)
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a Isolated yields following purification by silica gel column chromatography.
b The reaction was carried out with 10 mol % Josiphos type ligand and a trace

amount of 3h0 was observed in its crude 1NMR spectrum.
c The reaction was carried out with 10 mol % Cy3P�HBF4 as a ligand.
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Substrates bearing strong electron-withdrawing groups on either
phenoxy (entry 6) or pyridine (entry 7) rings such as a nitro group
furnished 3f and 3g in <5% and 29% yields, respectively.

In addition, cyclization of 2-methylamide-substituted phenoxy-
pyridines (entries 8 and 9) proved to be problematic. Cyclization of
2h and 2i was very sluggish and gave only trace amounts of the de-
sired products. Poor yields obtained for substrates 2h and 2i were
presumably due to strong coordination of palladium with 2-pyridine
methylamide moiety to shut down a catalytic cycle.8 However, use of
bidendate Josiphos ((S)-1-[(1R)-2-(dicyclohexylphosphino)ferroce-
nyl]ethyldicyclohexylphosphine) as the ligand was found to be
effective, and the product 3h (entry 8) was prepared in 50% yields
along with very small amounts of the regio-isomer 3h0 (determined
by crude 1H NMR). Cyclization of 2i bearing an electron-deficient
phenyl ring employing various bidendate ligands, such as Josiphos,
dppf, and BINAP, was unsuccessful. In conclusion, we have devel-
oped a convenient method for preparing functionalized benzo[4,5]-
furo[3,2-c]pyridines.9 The key intermediate, 2-bromophenoxy
pyridines9 was readily prepared from nucleophilic displacement of
chloropyridines with 2-bromophenols. Subsequent Pd-catalyzed
intramolecular Heck reaction afforded benzo[4,5]furo[3,2-c]pyri-
dine derivatives. This route should be applicable for the preparation
of many pharmacologically useful molecules.
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